If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-44=0
a = 5; b = 4; c = -44;
Δ = b2-4ac
Δ = 42-4·5·(-44)
Δ = 896
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{896}=\sqrt{64*14}=\sqrt{64}*\sqrt{14}=8\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{14}}{2*5}=\frac{-4-8\sqrt{14}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{14}}{2*5}=\frac{-4+8\sqrt{14}}{10} $
| 5x^2+4x-44=0 | | 5x^2+4x-44=0 | | 5x^2+4x-44=0 | | 3x+1x=1x-7 | | 3x+1x=1x-7 | | 1/2(-4x-10)=15 | | (300+x)/3=x | | (300+x)/3=1 | | -10=y/113 | | 3z=234 | | 3z=234 | | -10=y/113 | | -114=19m | | 3z=234 | | 3z=234 | | 3z=234 | | -114=19m | | -114=19m | | n=8+124 | | -114=19m | | n=8+124 | | n=8+124 | | -6x-1=x+13 | | -13q=-91 | | 2x^2-9x+5x-213=0 | | 3/4x−1/3x−23/8x=0 | | 2x^2-4x-213=0 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 |